当前位置:首页 > 科技 > 正文

正则化 l1,正则化参数的选取

正则化 l1,正则化参数的选取

梯度下降中正则化参数大小如何确定 1、梯度下降算法是一种最优化算法。基本原理是:通过不断迭代调整参数来使得损失函数的值达到最小。每次迭代都会根据当前的参数来计算损失函数...

梯度下降中正则化参数大小如何确定

1、梯度下降算法是一种最优化算法。基本原理是:通过不断迭代调整参数来使得损失函数的值达到最小。每次迭代都会根据当前的参数来计算损失函数的梯度,然后沿着梯度的反方向调整参数,使得损失函数的值变小。

2、考虑二维的情况,即只有两个权值w1和w2,此时L=|w1|+|w2|对于梯度下降法,求解J0的过程可以画出等值线,同时L1正则化的函数L也可以在w1w2的二维平面上画出来。

3、具体而言,梯度下降算法的工作过程如下:首先,选择一组初始的参数。然后,计算当前参数下的损失函数值。接着,计算损失函数关于参数的导数(即梯度),并沿着梯度的反方向调整参数。

4、梯度下降算法的正确步骤如下:初始化模型参数。计算预测值和真实值之间的误差。计算误差关于模型参数的偏导数(梯度)。根据梯度更新模型参数。重复步骤2到4,直到达到收敛条件或训练轮数达到预设值。

什么是正则化?希望得到详细定义和例子

图像复原从数学角度考虑,它等价于第一类fredholm积分方程,是一种反问题,具有很大的病态性,因此,必须进行正则化处理。从统计的角度看,正则化处理其实就是一种图像的先验信息约束 。

正则化的通俗解释就是给平面不可约代数曲线以某种形式的全纯参数表示。正则化(regularization),是指在线性代数理论中,不适定问题通常是由一组线性代数方程定义的,而且这组方程组通常来源于有着很大的条件数的不适定反问题。

看到没,这两个等价公式说明了,正则化的本质就是,给优化参数一定约束,所以,正则化与加限制约束,只是变换了一个样子而已。

正则化项L1和L2的直观理解及L1不可导处理

1、可以直观想象,因为L函数有很多『突出的角』(二维情况下四个,多维情况下更多),J0与这些角接触的机率会远大于与L其它部位接触的机率,而在这些角上,会有很多权值等于0,这就是为什么L1正则化可以产生稀疏模型,进而可以用于特征选择。

2、L1正则是拉普拉斯先验,L2是高斯先验。整个最优化问题可以看做是一个最大后验估计,其中正则化项对应后验估计中的先验信息,损失函数对应后验估计中的似然函数,两者的乘积即对应贝叶斯最大后验估计。

3、L1正则化项也称为Lasso,L2正则化参数也称为Ridge。 L1范数:权值向量w中各个元素的绝对值之和,L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择。

正则项浅析

1、L1正则化项也称为Lasso,L2正则化参数也称为Ridge。 L1范数:权值向量w中各个元素的绝对值之和,L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择。

2、L2正则化是指权值向量w中各个元素的 平方和然后再求平方根 (可以看到Ridge回归的L2正则化项有平方符号),通常表示为||w||2 一般都会在正则化项之前添加一个系数,Python中用α表示,一些文章也用λ表示。这个系数需要用户指定。

3、正则化中我们将保留所有的特征变量,但是会减小特征变量的数量级(参数数值的大小θ(j))。这个方法非常有效,当我们有很多特征变量时,其中每一个变量都能对预测产生一点影响。

最新文章