当前位置:首页 > 科技 > 正文

mysql优化工具 mysql主从复制的原理

mysql优化工具 mysql主从复制的原理

本篇文章给大家谈谈mysql优化工具,以及mysql主从复制的原理对应的知识点,文章可能有点长,但是希望大家可以阅读完,增长自己的知识,最重要的是希望对各位有所帮助,可...

本篇文章给大家谈谈mysql优化工具,以及mysql主从复制的原理对应的知识点,文章可能有点长,但是希望大家可以阅读完,增长自己的知识,最重要的是希望对各位有所帮助,可以解决了您的问题,不要忘了收藏本站喔。

mysql的groupby怎么优化

在某些情况中,MySQL能够做得更好,通过索引访问而不用创建临时表。GROUPBY使用索引的最重要的前提条件是所有GROUPBY列引用同一索引的属性,并且索引按顺序保存(例如,这是B-树索引,而不是HASH索引)。是否用索引访问来代替临时表的使用还取决于在查询中使用了哪部分索引、为该部分指定的条件,以及选择的累积函数。有两种方法可以通过索引优化GROUPBY语句:

1,组合操作结合所有范围判断式使用(如果有)。

2,首先执行范围扫描,然后组合结果元组。

mysql多表join怎么优化

在MySQL中,多表联接(JOIN)的性能优化可以通过以下几个方面来考虑:

1.索引优化:确保参与联接的列上有合适的索引。通过为联接列创建索引,可以提高联接的效率。可以使用`EXPLAIN`语句来分析查询计划,找到潜在的索引缺失或者性能差的索引。

2.使用合适的JOIN类型:根据实际需求选择合适的JOIN类型。常见的JOIN类型有INNERJOIN、LEFTJOIN、RIGHTJOIN和FULLJOIN等。根据表之间的关系以及查询需要的结果,选择合适的JOIN类型可以减小计算的复杂度。

3.避免多余的列:在联接查询时,只选择需要的列,避免选择无用的列。这可以减少数据传输和处理的成本,提高查询的效率。

4.分段查询:如果联接的表很大,可以考虑将查询分成多个子查询,分别对每个子查询单独进行联接操作,然后再进行汇总。这样可以减少一次查询涉及的数据量和联接的复杂度。

5.使用临时表:根据实际情况,可以考虑使用内存表或者临时表来存储中间结果,减少磁盘IO操作,提高联接的效率。

6.适当的扩展硬件资源:如果联接表的数据量较大,可以考虑增加服务器的内存、CPU等硬件资源,以提高并发执行能力和速度。

需要根据具体的查询和数据情况进行优化选择,可以结合使用MySQL的查询分析工具如`EXPLAIN`来定位和解决潜在的性能问题。同时,可以对表的结构和索引进行优化,以适应查询需求。

mysql数据库中,数据量很大的表,有什么优化方案么

个人的观点,这种大表的优化,不一定上来就要分库分表,因为表一旦被拆分,开发、运维的复杂度会直线上升,而大多数公司是欠缺这种能力的。所以MySQL中几百万甚至小几千万的表,先考虑做单表的优化。

单表优化

单表优化可以从这几个角度出发:

表分区:MySQL在5.1之后才有的,可以看做是水平拆分,分区表需要在建表的需要加上分区参数,用户需要在建表的时候加上分区参数;分区表底层由多个物理子表组成,但是对于代码来说,分区表是透明的;SQL中的条件中最好能带上分区条件的列,这样可以定位到少量的分区上,否则就会扫描全部分区。

读写分离:最常用的优化手段,写主库读从库;

增加缓存:主要的思想就是减少对数据库的访问,缓存可以在整个架构中的很多地方,比如:数据库本身有就缓存,客户端缓存,数据库访问层对SQL语句的缓存,应用程序内的缓存,第三方缓存(如Redis等);

字段设计:单表不要有太多字段;VARCHAR的长度尽量只分配真正需要的空间;尽量使用TIMESTAMP而非DATETIME;避免使用NULL,可以通过设置默认值解决。

索引优化:索引不是越多越好,针对性地建立索引,索引会加速查询,但是对新增、修改、删除会造成一定的影响;值域很少的字段不适合建索引;尽量不用UNIQUE,不要设置外键,由程序保证;

SQL优化:尽量使用索引,也要保证不要因为错误的写法导致索引失效;比如:避免前导模糊查询,避免隐式转换,避免等号左边做函数运算,in中的元素不宜过多等等;

NoSQL:有一些场景,可以抛弃MySQL等关系型数据库,拥抱NoSQL;比如:统计类、日志类、弱结构化的数据;事务要求低的场景。

表拆分

数据量进一步增大的时候,就不得不考虑表拆分的问题了:

垂直拆分:垂直拆分的意思就是把一个字段较多的表,拆分成多个字段较少的表;上文中也说过单表的字段不宜过多,如果初期的表结构设计的就很好,就不会有垂直拆分的问题了;一般来说,MySQL单表的字段最好不要超过二三十个。

水平拆分:就是我们常说的分库分表了;分表,解决了单表数据过大的问题,但是毕竟还在同一台数据库服务器上,所以IO、CPU、网络方面的压力,并不会得到彻底的缓解,这个可以通过分库来解决。水平拆分优点很明显,可以利用多台数据库服务器的资源,提高了系统的负载能力;缺点是逻辑会变得复杂,跨节点的数据关联性能差,维护难度大(特别是扩容的时候)。

希望我的回答,能够帮助到你!我将持续分享Java开发、架构设计、程序员职业发展等方面的见解,希望能得到你的关注。

MySQL5.6基本优化配置

因为MySQL5.6版本需要指定配置路径

mysqld--installMySQL--defaults-file=D:/Mysql/my.ini

如何优化MySQL千万级大表

概述

使用阿里云rdsforMySQL数据库(就是MySQL5.6版本),有个用户上网记录表6个月的数据量近2000万,保留最近一年的数据量达到4000万,查询速度极慢,日常卡死,严重影响业务。

老系统,当时设计系统的人大概是大学没毕业,表设计和SQL语句写的不仅仅是垃圾,简直无法直视。原开发人员都已离职,到我来维护,这就是传说中的维护不了就跑路,然后我就是掉坑的那个!!!

方案概述

方案一:优化现有MySQL数据库。优点:不影响现有业务,源程序不需要修改代码,成本最低。缺点:有优化瓶颈,数据量过亿就玩完了。

方案二:升级数据库类型,换一种100%兼容MySQL的数据库。优点:不影响现有业务,源程序不需要修改代码,你几乎不需要做任何操作就能提升数据库性能,缺点:多花钱。

方案三:一步到位,大数据解决方案,更换newSQL/noSQL数据库。优点:没有数据容量瓶颈,缺点:需要修改源程序代码,影响业务,总成本最高。

优化现有MySQL数据库数据库设计

表字段避免null值出现,null值很难查询优化且占用额外的索引空间,推荐默认数字0代替null。

尽量使用INT而非BIGINT,如果非负则加上UNSIGNED(这样数值容量会扩大一倍),当然能使用TINYINT、SMALLINT、MEDIUM_INT更好。

尽量使用TIMESTAMP而非DATETIME。

单表不要有太多字段,建议在20以内。

用整型来存IP。

索引并不是越多越好,要根据查询有针对性的创建,考虑在WHERE和ORDERBY命令上涉及的列建立索引,可根据EXPLAIN来查看是否用了索引还是全表扫描。

应尽量避免在WHERE子句中对字段进行NULL值判断,否则将导致引擎放弃使用索引而进行全表扫描。

值分布很稀少的字段不适合建索引,例如"性别"这种只有两三个值的字段。

字符字段最好不要做主键。

不用外键,由程序保证约束。

尽量不用UNIQUE,由程序保证约束。

使用多列索引时注意顺序和查询条件保持一致,同时删除不必要的单列索引。

使用可存下数据的最小的数据类型,整型<date,time<char,varchar<blob*

使用简单的数据类型,整型比字符处理开销更小,因为字符串的比较更复杂。如,int类型存储时间类型,bigint类型转ip函数。

使用合理的字段属性长度,固定长度的表会更快。使用enum、char而不是varchar。

尽可能使用notnull定义字段。

尽量少用text,非用不可最好分表。

查询频繁的列,在where,groupby,orderby,on从句中出现的列。

where条件中<,<=,=,>,>=,between,in,以及like字符串+通配符(%)出现的列。

长度小的列,索引字段越小越好,因为数据库的存储单位是页,一页中能存下的数据越多越好。

离散度大(不同的值多)的列,放在联合索引前面。查看离散度,通过统计不同的列值来实现,count越大,离散程度越高。

SQL编写

使用limit对查询结果的记录进行限定。

避免select*,将需要查找的字段列出来。

使用连接(join)来代替子查询。

拆分大的delete或insert语句。

可通过开启慢查询日志来找出较慢的SQL。

不做列运算:SELECTidWHEREage+1=10,任何对列的操作都将导致表扫描,它包括数据库教程函数、计算表达式等等,查询时要尽可能将操作移至等号右边。

SQL语句尽可能简单:一条SQL只能在一个cpu运算;大语句拆小语句,减少锁时间;一条大SQL可以堵死整个库。

OR改写成IN:OR的效率是n级别,IN的效率是log(n)级别,in的个数建议控制在200以内。

不用函数和触发器,在应用程序实现。

避免%xxx式查询。

少用JOIN。

使用同类型进行比较,比如用'123'和'123'比,123和123比。

尽量避免在WHERE子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。

对于连续数值,使用BETWEEN不用IN:SELECTidFROMtWHEREnumBETWEEN1AND5。

列表数据不要拿全表,要使用LIMIT来分页,每页数量也不要太大。

分区

分区表的数据更容易维护,可以通过清楚整个分区批量删除大量数据,也可以增加新的分区来支持新插入的数据。另外,还可以对一个独立分区进行优化、检查、修复等操作。

部分查询能够从查询条件确定只落在少数分区上,速度会很快。

分区表的数据还可以分布在不同的物理设备上,从而搞笑利用多个硬件设备。

可以使用分区表赖避免某些特殊瓶颈,例如InnoDB单个索引的互斥访问、ext3文件系统的inode锁竞争。

可以备份和恢复单个分区。

一个表最多只能有1024个分区。

如果分区字段中有主键或者唯一索引的列,那么所有主键列和唯一索引列都必须包含进来。NULL值会使分区过滤无效。

所有分区必须使用相同的存储引擎。

分表

分表就是把一张大表,按照如上过程都优化了,还是查询卡死,那就把这个表分成多张表,把一次查询分成多次查询,然后把结果组合返回给用户。

分表分为垂直拆分和水平拆分,通常以某个字段做拆分项。比如以id字段拆分为100张表:表名为tableName_id%100。

但:分表需要修改源程序代码,会给开发带来大量工作,极大的增加了开发成本,故:只适合在开发初期就考虑到了大量数据存在,做好了分表处理,不适合应用上线了再做修改,成本太高!!!而且选择这个方案,都不如选择我提供的第二第三个方案的成本低!故不建议采用。

分库升级数据库

开源数据库会带来大量的运维成本且其工业品质和MySQL尚有差距,有很多坑要踩,如果你公司要求必须自建数据库,那么选择该类型产品。如tiDBpingcap/tidb,CubridOpenSourceDatabaseWithEnterpriseFeatures。

阿里云POLARDB,POLARDB是阿里云自研的下一代关系型分布式云原生数据库,100%兼容MySQL,存储容量最高可达100T,性能最高提升至MySQL的6倍。POLARDB既融合了商业数据库稳定、可靠、高性能的特征,又具有开源数据库简单、可扩展、持续迭代的优势,而成本只需商用数据库的1/10。

阿里云OcenanBase,淘宝使用的,扛得住双十一,性能卓著,但是在公测中,我无法尝试,但值得期待。

阿里云HybridDBforMySQL(原PetaData),云数据库HybridDBforMySQL(原名PetaData)是同时支持海量数据在线事务(OLTP)和在线分析(OLAP)的HTAP(HybridTransaction/AnalyticalProcessing)关系型数据库。

腾讯云DCDB,DCDB又名TDSQL,一种兼容MySQL协议和语法,支持自动水平拆分的高性能分布式数据库——即业务显示为完整的逻辑表,数据却均匀的拆分到多个分片中;每个分片默认采用主备架构,提供灾备、恢复、监控、不停机扩容等全套解决方案,适用于TB或PB级的海量数据场景。

hadoop家族。hbase/hive怼上就是了。但是有很高的运维成本,一般公司是玩不起的,没十万投入是不会有很好的产出的!

我选择了阿里云的MaxCompute配合DataWorks,使用超级舒服,按量付费,成本极低。

MaxCompute可以理解为开源的Hive,提供SQL/mapreduce/ai算法/python脚本/shell脚本等方式操作数据,数据以表格的形式展现,以分布式方式存储,采用定时任务和批处理的方式处理数据。DataWorks提供了一种工作流的方式管理你的数据处理任务和调度监控。

当然你也可以选择阿里云hbase等其他产品,我这里主要是离线处理,故选择MaxCompute,基本都是图形界面操作,大概写了300行SQL,费用不超过100块钱就解决了数据处理问题。

mysql优化连接数防止访问量过高的方法

这个要看你的这些网站的流量,以及程序对数据库的负载大小所决定,如果程序写的很好,SQL语句注意优化,并且有缓存的话,一般情况下,不会有什么问题,当然还是要取决于你服务器的配置如何,总之不是说单方面可以确定是不是会出问题。

如果出现问题,比如数据库负载过高,那么其它网站肯定会受影响,那就是访问慢,或报连接数过多,或无法接数据库。

文章到此结束,如果本次分享的mysql优化工具和mysql主从复制的原理的问题解决了您的问题,那么我们由衷的感到高兴!

最新文章