
反函数与原函数的转化(反三角函数转换公式)
- 科技
- 2023-08-14
- 4

大家好,感谢邀请,今天来为大家分享一下反函数与原函数的转化的问题,以及和反三角函数转换公式的一些困惑,大家要是还不太明白的话,也没有关系,因为接下来将为大家分享,希望可...
大家好,感谢邀请,今天来为大家分享一下反函数与原函数的转化的问题,以及和反三角函数转换公式的一些困惑,大家要是还不太明白的话,也没有关系,因为接下来将为大家分享,希望可以帮助到大家,解决大家的问题,下面就开始吧!
反函数的函数等于原函数
反函数与原函数的关系:反函数的定义域与值域分别是原函数的值域与定义域;函数的反函数,本身也是一个函数,由反函数的定义,原函数也是其反函数的反函数,故函数的原函数与反函数互称为反函数;偶函数必无反函数;奇函数如果有反函数,其反函数也是奇函数;原函数与其反函数在他们各自的定义域上单调性相同;他们的图像是关于y=x对称的。
反三角函数与原函数的转化公式
反函数与原函数的转化公式是x=f^(-1)(y),其中y表示原函数,而原函数是指对于一个定义在某区间的已知函数,如果存在可导函数F(x),则该区间内的任一点都存在dF(x)=f(x)dx。且若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”,函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数
反三角函数余角关系公式
arcsin(x)+arccos(x)=π/2
arctan(x)+arccot(x)=π/2
arcsec(x)+arccsc(x)=π/2
反三角函数负数关系公式
arcsin(-x)=-arcsin(x)
arccos(-x)=π-arccos(x)
arctan(-x)=-arctan(x)
arccot(-x)=π-arccot(x)
arcsec(-x)=π-arcsec(x)
arcsec(-x)=-arcsec(x)
反三角函数倒数关系公式
arcsin(1/x)=arccsc(x)
arccos(1/x)=arcsec(x)
arctan(1/x)=arccot(x)=π/2-arctan(x)(x>0)
arccot(1/x)=arccot(x)=π/2-arccot(x)(x>0)
arccot(1/x)=arctan(x)+π=3π/2-arccot(x)(x<0)
arcsec(1/x)=arccos(x)
arccsc(1/x)=arcsin(x)
原函数与反函数的对应法则是什么函数
反函数与原函数的关系公式:dy=(df/dx)dx。一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x=g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f-1(x)。原函数是指对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。
三角原函数与反函数怎么转化
反三角函数都是三角函数的反函数。严格地说,准确地说,它们是三角函数在某个单调区间上的反函数。以反正弦函数为例,其他反三角函数同理可推。
?
1转化分析
首先要明确:三角函数和反三角函数求的不一样。
三角函数是已知角,让你求对应的三角函数值,不同的三角函数值有不同的范围,比如正、余弦函数值的范围是[-1,1],而正切是R。
反三角函数是已知了三角函数值,让你求对应的角,同样的不同的反三角有不同的范围,比如反正弦的范围是[-Pi/2,Pi/2],反余弦的范围是[0,Pi],反正切的范围是(-Pi/2,Pi/2)。
要想求反三角函数,特殊值,你就必须先识记特殊三角函数值;不是特殊三角函数值,用反三角函数符号来表示,不同的象限角有不同的表示。
原函数与反函数的数学关系是什么
在一般情况下,如果x与y关于某种对应关系函数f(x)相对应,y=f(x),则y=f(x)的反函数为y=f-1(x)。反函数就是把原函数的x,y互换,原函数与反函数的导数互为倒数。
(一)原函数:
原函数的定义:对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。
原函数的例子:∫cosxdx=sinx
原函数的定理:函数f(x)在某区间上连续的话,那么f(x)在这个区间里必会存在原函数。这是属于充分不必要条件,还被叫做是原函数存在定理,要是函数有原函数的话,那它的原函数为无穷多个。
(二)反函数:
反函数的定义:设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x=g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f﹣(x)。反函数y=f﹣(x)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。
反函数的例子:y=2x-1的反函数是y=0.5x+0.5
反函数性质:函数f(x)与它的反函数f-1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称;函数存在反函数的充要条件是,函数的定义域与值域是一一映射的。
反函数与原函数的关系
1、函数的反函数,本身也是一个函数,由反函数的定义,原来函数也是其反函数的反函数,故函数的原来函数与反函数互称为反函数。
2、反函数的定义域与值域分别是原来函数的值域与定义域。
3、偶函数必无反函数。
4、单调函数必有反函数。
5、奇函数如果有反函数,其反函数也是奇函数。
6、原函数与其反函数在他们各自的定义域上单调性相同。
7、互为反函数的图象间的关系。
8、函数y=f(x)的图象和它的反函数y=f-1(x)的图象关于直线y=x对称,关于这一关系的理解要注意以下三点:
函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,这个结论是在坐标系中横坐标轴为x轴,纵坐标轴为y轴,而且横坐标轴与纵坐标轴的单位长度一致的前提下得出的;
(a,b)在y=f(x)的图象上<=>(b,a)在y=f-1(x)的图象上;
若y=f(x)存在反函数y=f-1(x),则函数y=f(x)的图象关于直线y=x对称的充分必要条件为f(x)=f-1(x),即原、反函数的解析式相同
好了,文章到这里就结束啦,如果本次分享的反函数与原函数的转化和反三角函数转换公式问题对您有所帮助,还望关注下本站哦!
本文链接:http://www.depponpd.com/ke/2548.html