当前位置:首页 > 科技 > 正文

gamma函数的导数?gamma函数定义

gamma函数的导数?gamma函数定义

大家好,今天给各位分享gamma函数的导数的一些知识,其中也会对gamma函数定义进行解释,文章篇幅可能偏长,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在就马上...

大家好,今天给各位分享gamma函数的导数的一些知识,其中也会对gamma函数定义进行解释,文章篇幅可能偏长,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在就马上开始吧!

微积分如何算得数伽马函数,还有基本积分式中的C是什么C是什么常数

表示任意常数,因为对常数求导是零,故在没有初始条件的情况下,一个函数的原函数有无数个,他们就相差一个任意常数,就是积分公式里的C

你觉得最经典的数学公式是什么

这个问题其实也说过挺多次了,不过也不差这一次。2013年,英国著名科普作家艾恩·史都华(IanStewart)发表了他的著作——《改变世界的17个方程17EquationsThatChangedTheWorld》,向大家诠释了人类历史上最伟大的17个方程。这17个方程是:

17个方程中有2个来自牛顿,2个来自欧拉。有人会认为没有把欧拉恒等式e^iπ+1=0纳入是一大疏忽,欧拉把数学中最基本的5个常数——0、1、圆周率π、自然对数的底e和虚数单位i,以及数学中最基本的两个符号,等号和加号,通过一个简单的恒等式联系在了一起,实在是让人叹服,欧拉恒等式被誉为世界上最美丽的公式。史都华选中了i^2=-1,可能在《改变世界》和《美》之间他更注重前者。

如果把《改变世界》和《美》折中一下,并且只选择100年前的数学方程,同时抛开在物理、信息论等方面应用的话,可以得到以下10个方程或等式:

人类花了千万年来从数量转向数字,数字概念的诞生是一个漫长的思维抽象的过程。至少3万年以前,人类就已经会计数了,这是人之所以为人的重要转折点,是人类与动物的根本区别之一。公元前8千年左右,算术诞生了,人类渐渐走上了科学之路,虽然路漫漫其修远兮,但上下求索,一发不可收拾。1+1=2对世界的改变是巨大的,故把它选入放于首位。

至于《爱情曲线》,它源于一个传说:

法国数学家笛卡尔在1649年欧洲大陆爆发黑死病时流浪到瑞典,在斯德哥尔摩的街头,52岁的笛卡尔邂逅了18岁的瑞典公主克里斯汀。几天后,他意外的接到通知,国王聘请他做小公主的数学老师。跟随前来通知的侍卫一起来到皇宫,他见到了在街头偶遇的女孩子。从此,他当上了小公主的数学老师。

小公主的数学在笛卡尔的悉心指导下突飞猛进,笛卡尔向她介绍了自己研究的新领域——直角坐标系。每天形影不离的相处使他们彼此产生爱慕之心,公主的父亲国王知道了后勃然大怒,下令将笛卡尔处死,小公主克里斯汀苦苦哀求后,国王将其流放回法国,克里斯汀公主也被父亲软禁起来。

笛卡尔回法国后不久便染上重病,他日日给公主写信,因被国王拦截,克里斯汀一直没收到笛卡尔的信。笛卡尔在给克里斯汀寄出第十三封信后就气绝身亡了,这第十三封信内容只有短短的一个公式:r=a(1-sinθ)。国王看不懂,觉得他们俩之间并不是总是说情话的,将全城的数学家召集到皇宫,但没有一个人能解开,他不忍心看着心爱的女儿整日闷闷不乐,就把这封信交给一直闷闷不乐的克里斯汀。

公主看到后,立即明了恋人的意图,她马上着手把方程的图形画出来,一颗心形图案出现在眼前,克里斯汀不禁流下感动的泪水,这条曲线就是著名的“心形线”。

国王死后,克里斯汀登基,立即派人在欧洲四处寻找心上人,无奈斯人已故,先她一步走了,徒留她孤零零在人间......据说这封享誉世界的另类情书还保存在欧洲笛卡尔的纪念馆里。

单从故事而言,这是个浪漫又传奇的爱情故事,很美,所以把它选入。

贝叶斯

贝叶斯方法是概率论的重要方法,很多领域都可以见到它的影子,所以把它选入名单。纽约时报曾经报道?从物理学到癌症研究,从生态学到心理学,贝叶斯统计正渗透到各个领域?。无疑,贝叶斯是机器学习的核心方法之一。如今贝叶斯已火热到无处不在,被看做一种生成知识的强大方法,追随者有一种奇怪的崇拜式热情,这也能被用来促进迷信和伪科学的发展。

拉马努金

拉马努金是印度千年一遇的伟大数学家。他有着强大、神秘的直觉洞察力或“数感”,给出了近3900个数学公式和命题,好像有神灵在给他启示一样。他所预见的数学命题,日后有许多得到了证实。如比利时数学家德利涅(V.Deligne)于1973年证明了拉马努金1916年提出的一个猜想,并因此获得了1978年的菲尔兹奖。

选上的等式只是一个例子,不久以前得到证明。这种很美的等式有不少,如:

等式中的叫黄金分割率,不少人把它看成美的闪光,而等式把黄金分割率、圆周率π、自然对数的底e联系在了一起。

还如:

等式结合了无穷级数和广义连分数、给出了它们与两个最有名的数学常数之间的关系。

历史上、生活中,人们常常触景生情、触物生情,而诗兴大发,不少人因此留下了千古名句。然而,好像很少有人托定理、托公式抒情,表达慨叹的。面对以上如此美妙的真理,想必大家也有真情实感加以赞美,就此邀请大家给上面10个公式赋诗,那将是科技理性与人文感性的精彩碰撞!

上传拙诗一首抛砖引玉:

毕达哥拉‘思’勾股

百牛一出千人舞

投尸大海太无理

几何原本芳千古

解释:据说毕达哥拉斯沉思发现了勾股定理后,即斩了百头牛作庆祝,因此勾股定理又称“百牛定理”。毕氏学派的弟子希伯索斯发现了一个惊人的事实,若正方形的边长为1,则对角线的长√2不是一个有理数,这一发现使该学派领导人惶恐,希伯索斯被残忍地投尸大海,葬身鱼腹。然而真理毕竟是淹没不了的,抹杀真理才是“无理”。人们为了纪念希伯索斯,就把他发现的这种量取名“无理数”。欧几里得《几何原本》中提出了一种证明无理数的经典方法。

gamma函数导数

伽玛函数的导数称为Digamma函数,记为Ψ(x)=d(lnΓ(x))/dx=Γ'(x)/Γ(x)。

Digamma函数同调和级数相关,其中Ψ(n+1)=H_n(x)-γ=1+1/2+...+1/n-γ,其中γ=lim_{n->infty}(1+1/2+...+1/n-ln(n))是欧拉常数。而对于任意x有Ψ(x+1)=Ψ(x)+1/x。

在复数范围内,Digamma函数可以写成Ψ(x+1)=-γ+Σx/(n(n+x)).而Digamma函数的泰勒展开式为

Ψ(x+1)=-γ-Σζ(n+1)(-x)^n,其中函数ζ(x)为黎曼zeta函数,是关于黎曼猜想的一个重要函数。

类似伽玛函数,Digamma函数可以有渐进式:Ψ(x)=ln(x)-1/(2x)-ΣB_{2n}/(2n*x^{2n})

数学的本质和意义是什么

这个问题,莘莘学子当琢磨,理工学者须吃透。先给出我的答案,然后逐一解释,最后警惕走火入魔,共有七个标题。

数学的本质是——抽象思维,表现为三个方面:①代数抽象或统计方法、②几何抽象或微积分方法、③拓扑抽象或符号方法。

数学的意义是——应用工具,表现为三个方面:①作为逻辑思维的工具、②作为物理表达的工具、③作为设计制造的工具。

代数抽象,是统计思维的精髓

统计抽象,即不考虑样本个性差异,只考虑样本的共性特征,对样本进行统计操作,包括:统计总量、统计分组、统计分析、统计图表。

某类事物的存在形式是千差万别的,但他们的共性:都是相对独立的个体、个数、单位1。

看看:1个男人+1个女人=2个人;1个狗+1个猫=2个宠物;1个大黑狗+1个小花狗=2个狗;1个圣人君子+1个流浪狗=2个哺乳动物...

再看:1个电子+1个质子=2个粒子;1个地球+1个太阳=2个天体;1个伽玛线光子+1个红外线光子=2个光子...

显然:若干个单位1,就是“数”。毕达哥拉斯说“万象皆数”,统计是最基本的数学逻辑。

然而,形式逻辑≠数学逻辑,唯象思维≠数学思维,抽象事物并不存在。

悖论:白马非马,因为抽象的马不存在,没有个性的马不存在。

几何抽象,是微积分思维的精髓

微积分抽象:即把自然的曲线元素,变成人造的直线元素,把自然的漩涡元素,变成人造的圆弧元素。

物体的结构,都是不规则的椭球。植物的花粉与种子,动物的精子与卵子,微生物的孢子与泡囊,无机界的沙子与晶胞,太空中的尘埃与星体,可以做“球模型”的几何抽象。

物体的运动,都是不规则的流线。自然界不存在直线运动。指纹、年轮、神经、蛛网、海螺、河道、湍流、云涌......皆无纯几何轨迹。

然而,在这些缭乱走向中:当你截取相当小片段,它们就是一段圆弧;当你截取足够小片段,它们就成了一节直线。

无论多么杂乱无序的缭绕,都可以因为“片段→差分→微分”之几何抽象手术,变成极简的线与弧,变得规规矩矩而听由处置。这就是几何抽象的神奇魅力。

拓扑抽象,是符号思维的精髓

拓扑学或形势分析论,研究几何空间在连续改变形状后还能保持不变的共性或抽象性,通俗的讲,研究“万变不离其宗”。

拓扑抽象的主要指标有:连通性、紧致性/仿紧性、定向性、一致性、分离性。例如:就连通性:球面=平面≠环面;就定向性:曲面=平面≠莫比乌斯曲面/非定向性。

笔者的符号,是广义的形势,诸如模拟图形、表现形式、空间结构、流形样式。

拓扑抽象,在高科技充当重要角色,如:计算机图形学、超导超流技术、机器人仿生。详细资料请搜关键词#拓扑学#。

过分抽象,导致数学唯心主义

抽象,只是一种理念、范畴、智慧、技巧、工具、方式、方法,只能用来统计与模拟,不能强加于自然界的具体事物,不可过度消费抽象工具,否则会走向数学唯心主义的旁门左道。

现代物理学,大刮数学风,过度使用广义拓扑理念创造物理模型。例如:宇宙爆胀论、有界无限论、粒子零维论、纠缠超距论、平行宇宙论、高维弦理论,都不免有点走火入魔。

数学充当逻辑思维的工具

表现在数理逻辑,如几何证明、代数操作、逻辑运算、数学分析、数据结构、逻辑电路方面。

数学充当物理表达的工具

尤其表现在物理实验(包括化学实验)的定量分析、建立变量关系的解析式/公式/方程上。如果没有数学表达式,科研与八卦无异。

数学充当应用技术的工具

人类一切物质技术装备的设计与制造,都离不开数学工具与数学方法的支持。可以说,数学是技术的灵魂,尤其是超精细与高尖端的结构与程序设计更需要高级数学工具的支持。

物理新视野,旨在建设性新思维,共同切磋物理/逻辑/双语的疑难问题。

伽马函数的收敛与发散

Γ(s)=∫(上限,正无穷;下限,0)exp(-x)*x^(s-1)dx(s>0)

由于s-1<0时,x=0是被积函数的瑕点,故令A1=∫(1,0)exp(-x)*x^(s-1)dxA2=∫(inf,1)e(-x)*x^(s-1)dx

s>=1时,A1是定积分;0<s<1时,e(-x)*x^(s-1)=1/[x^(1-s)*e(-x)]<1/x^(1-s)

由比较审敛法:函数f(x)在区间(a,b]上连续,且f(x)>=0,x=a为f(x)的瑕点,如果存在常数M>0,及q<1,使f(x)<=M*(x-a)^(-q)(a<x<=b),则反常积分收敛。知A1收敛。

limx^2*[e(-x)x^(s-1)]=limx^(s+1)/e(x)=0(x→inf,洛必达法则,即上下函数求导,只要有定义可进行无限次)

有审敛法:函数在区间[a,inf)上连续,且f(x)>=0,如果存在常数p>1,使得lim(x^p)*f(x)(x→inf)存在,则反常积分收敛。

故gamma函数收敛。

数学代码读法详解

数学代码是一种用于表示数学公式和算法的语言,通常用于科学计算、数据分析、机器学习等领域。以下是数学代码的读法详解:

1.数学符号的读法

数学符号是数学代码的核心元素,需要正确理解其含义和读法。比如,加号“+”表示加法,减号“-”表示减法,乘号“×”表示乘法,除号“÷”表示除法,等号“=”表示等于,大于号“>”表示大于,小于号“<”表示小于,等等。

2.函数的读法

函数是数学代码中常见的元素,表示数学公式中的一种运算方法。比如,sin(x)表示正弦函数,cos(x)表示余弦函数,tan(x)表示正切函数,exp(x)表示指数函数,log(x)表示对数函数,等等。

3.变量和常数的读法

变量和常数是数学代码中表示数值的元素,需要正确理解其含义和读法。比如,x、y、z等表示变量,通常用来表示未知数或自变量;而1、2、3等表示常数,通常用来表示已知数或常量。

4.算法的读法

算法是数学代码中用于解决问题的一种方法,包括数值计算、优化、统计分析等。比如,求解方程可以使用牛顿迭代算法,最小二乘法可以用来拟合数据,K-Means算法可以用来聚类数据,等等。

总之,数学代码的读法需要根据具体的数学符号、函数、变量和算法进行理解和解释,需要具备一定的数学基础和编程经验。在实际应用中,需要熟练掌握数学代码的语法和规范,以便正确地使用和解读数学代码。

关于gamma函数的导数和gamma函数定义的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

最新文章