
黎曼函数在01连续吗,黎曼函数连续吗
- 科技
- 2023-09-30
- 6

黎曼函数在无理点的连续性如何证明? 1、证明如下:对任意X属于(0,1),任给正数w,考虑除X以外所有黎曼函数的函数值大于等于w的点,因为黎曼函数的正数值都是1/q的形...
黎曼函数在无理点的连续性如何证明?
1、证明如下:对任意X属于(0,1),任给正数w,考虑除X以外所有黎曼函数的函数值大于等于w的点,因为黎曼函数的正数值都是1/q的形式,且对每个q,函数值等于1/q的点都是有限的。
2、这样,在无理点的任何邻域尽管有无穷多个有理点,但数值大的不多(给定一个小于1的数,只有有限个有理点的数值能比这个数大),剩下的无穷多个有理点函数值都很小,和0差不多。因此在无理点连续很正常。
3、推论:黎曼函数在(0,1)内的无理点处处连续,有理点处处不连续。推论:黎曼函数在区间[0,1]上是黎曼可积的。(实际上,黎曼函数在[0,1]上的积分为0。
4、下面将对黎曼函数的间断点是第一类间断点中的可去间断点进行证明。
5、函数可积性的勒贝格判据指出,一个有界函数是黎曼可积的,当且仅当它的所有不连续点组成的集合测度为0。黎曼函数的不连续点集合即为有理数集,是可数的,故其测度为0,所以由勒贝格判据,它是黎曼可积的。
为什么黎曼函数在[0,1]上连续而在有理数上不连续呢?
对有理点处处不连续,因为对固定的有理点它的函数值是确定的值,而它的任何邻域里总有无理点。还有函数值比这点的函数值更小的无穷多个有理点,这样它和附近的函数值差别就比较大。
如:黎曼函数在(0,1)内所有无理数点处连续,在所有有理数点处间断。每一点处都存在着极限,且极限都是0(可见间断点都属第一类中的可去间断点)。这个函数在[0,1]上可积,它在[0,1]上的定积分为0,等等。
函数可积性的勒贝格判据指出,一个有界函数是黎曼可积的,当且仅当它的所有不连续点组成的集合测度为0。黎曼函数的不连续点集合即为有理数集,是可数的,故其测度为0,所以由勒贝格判据,它是黎曼可积的。
对任意X属于(0,1),任给正数w,考虑除X以外所有黎曼函数的函数值大于等于w的点,因为黎曼函数的正数值都是1/q的形式,且对每个q,函数值等于1/q的点都是有限的。所以除X以外所有函数值大于等于w的点也是有限的。
函数在某个区间内连续则必定在该区间上可积,但反过来不一定,例如著名的黎曼函数,在[0,1]上的所有有理点(除了0)都不连续,但它确是可积的。
为什么黎曼函数在无理点连续,它不是一些散点吗?(点与点之间因为有有理...
1、推论:黎曼函数在(0,1)内的无理点处处连续,有理点处处不连续。
2、所以除X以外所有函数值大于等于w的点也是有限的。设这些点,连同0、1,与X的最小距离为w ,则X 的半径为w的去心邻域中所有点函数值均在(0,w)中,从而黎曼函数在 时的极限为0。
3、如:黎曼函数在(0,1)内所有无理数点处连续,在所有有理数点处间断。每一点处都存在着极限,且极限都是0(可见间断点都属第一类中的可去间断点)。这个函数在[0,1]上可积,它在[0,1]上的定积分为0,等等。
4、对有理点处处不连续,因为对固定的有理点它的函数值是确定的值,而它的任何邻域里总有无理点。还有函数值比这点的函数值更小的无穷多个有理点,这样它和附近的函数值差别就比较大。
5、而非连续曲线,这是因为它一方面处处极限为0,另一方面在任意的小区间中,都包含着无数个值不为0的点。通常来说,黎曼函数的图像是由它在函数值最大的有限个有理点的值组成的散点图来逼近的。
6、函数可积性的勒贝格判据指出,一个有界函数是黎曼可积的,当且仅当它的所有不连续点组成的集合测度为0。黎曼函数的不连续点集合即为有理数集,是可数的,故其测度为0,所以由勒贝格判据,它是黎曼可积的。
本文链接:http://www.depponpd.com/ke/39885.html